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Uncertainty Quantification
using Probability

 What does probability mean?
 General agreement on probability axioms (e.g. as

stated by Kolmogorov in 1933) but they are
devoid of any meaning

 Common interpretation is that P(A) denotes the
relative frequency of an “inherently random” event
A “in the long run”

 “Inherently random” is poorly defined, cannot be
proved and limits domain of applicability, e.g. is
“probability of a model” meaningful?



J. L. Beck - Sandia Workshop on
MMVV - Aug 07

Probability Logic

 Alternative interpretation of probability
(e.g. P.S. Laplace, H. Jeffreys, R.T. Cox, E.T. Jaynes)
 P(b|a) = measure of how plausible  proposition b is,
conditional on information in proposition a
 It extends Boolean propositional logic to allow quantification

of plausible reasoning when information is missing
 No division into aleatoric vs epistemic uncertainty – it’s all

epistemic!
 Probability models are viewed as (lack of) knowledge models

to cover missing information, not something approximating
“true probabilities” for real phenomena

a b!a b!
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Probability Logic (Cont.)

 By enforcing consistency with Boolean logic, Cox derived
axioms for probability logic (Cox, 1946, 1961; Jaynes
1983, 2003):

For any propositions a, b and c,
 P1: P(b|a)≥0                              [By convention]
 P2: P(~b|a)=1- P(b|a)                 [Negation Function]
 P3: P(c&b|a)=P(c|b&a)P(b|a)    [Conjunction Function]
 These axioms and De Morgan’s Law imply Disjunction

Function:
P(c or b|a) = P(c|a) + P(b|a) - P(c&b|a)
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Probability Logic (Cont.)

 Kolmogorov’s axioms for finite-set probability measure
can be derived from those of probability logic
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Model Validation

 Since any deterministic model only approximates real
system behavior, cannot strictly validate a model

 Must allow for uncertain prediction error and use system
data to update probability distribution on this

 Soft validation: e.g. is updated prediction-error variance
acceptable?

 Must also allow for uncertain parameters in model
- leads to concept of stochastic model class which includes
parametric uncertainty and prediction-error uncertainty
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 A stochastic model class of a system allows prior and posterior
robust predictive analysis

- predictions of all models in the model class are considered, each
weighted by its prior or posterior probability (Total Probability Thm)
- automatically treats sensitivity of predictions to the set of
parameter values

 Stochastic simulation methods make required calcs feasible:

Prior case - MCS (or Subset Simulation for very low probability
events)

Posterior case – MCMC methods with tempering (i.e. evolution to
high probability-content region of parameter space)

Robust System Analysis
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Posterior Comparison of Competing
Model Classes for a System

 Posterior probability of model class via Bayes’
Theorem is controlled by evidence given by the data

 Recently shown (Muto & Beck, 2007):

Log evidence
      =  Average (posterior mean) data fit of model class

            – Expected information gain (Shannon’s relative entropy)
   about the model parameters from the data

      =  Measure of consistency of the model class with the data
        – Penalty for more complex models that extract more   

    information from the data
Bayes’ Theorem for model classes automatically gives a
quantitative Principle of Parsimony in model building



J. L. Beck - Sandia Workshop on
MMVV - Aug 07

Final Remark

 We have applied UQ based on probability logic
using stochastic simulation tools to:
 modeling, analysis, identification and control of

uncertain dynamic systems subjected to uncertain
excitation

 Bayesian classification and regression with an
automatic relevance determination prior (e.g.
relevance vector machine)


